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Impact

Marine research, underwater structure maintenance and pipeline surveillance are frequent and expensive operations. Controlling autonomous underwater vehicles (AUVs) in this environment
is challenging due to non­linear dynamics. We also consider the dynamics evolution that can rise from current, thruster decay, payload change etc. We search for a controller that can
efficiently control AUV in non­linear and time­varying dynamics. This should lead to a controller that quickly adapts to changes in the AUV configuration allowing modification (new sensors,
moving sensors around), and guarantees that the AUV should finish and return from every mission as long as there isn’t a critical failure. This research should drastically reduce the cost of
operating an AUV and the controller tuning time.

Objectives

The goal is to create an easy­to­use adaptive controller for non­linear envi­
ronments.

• Implement a Model­Based Controller.

• Learn the dynamical model of the robot using prior data.

• Adapt the learned model to various incurring dynamics changes.

• Compare its raw performance against state­of­the­art controllers.

• Compare its performance under dynamics changes.

• Incorporate vision inside the controller through world­models (VAE,
world model etc).

Methodology

To address the challenges, we use the following methods:

• Controller: The choice of the controller is based on Model Predictive Path Integral (MPPI) [1]. MPPI is a sampling­
based controller working in the action space. Using a non­linear predictive model, the controller samples a set of
actions and generates expected trajectories. It then assigns a weight to each sample with an objective­dependent
cost function. The action decision is based on the weighted average contribution of each samples.

• Predictive Model: We decide to work with neural networks due to their ability to model any non­linear function,
their inference time and the new popularity of adaptive methods (sim2real, few­shot­learning).

We also use the analytical Fossen model [2] as ground truth to compare our NN­MPPI algortihm against.
Those equation model the dynamics equation with ODEs. However, the parameters of the model are difficult and
long to acquire.

Architecture

Software architecture. The state is first propagated using randomly sampled actions with the pre­
dictive model. Each sampled is assigned a weights through the cost function. Finally the optimal
action is computed using importance sampling.

Current results

NN­learned model using bags of trajectories.

Despite the large error in the model, the controller, with it as the predictive model, was able to
bring the AUV to the desired goal. The AUV was jittering at the goal position. This is due to the
model­missmatch. This proves that MPPI can compensate for a huge model­missmatch but also
that NN­MPPI is a viable solution for AUV control.

Company results

We tested the controller with the sponsoring company using an manually identified Fossen model described in Proctor’s thesis [3].

The model miss­matches the ground truth as Vaarst added different sensors on the AUV. However, the (untuned) controller was able to successfully reach the goal. The
operator also mentioned the higher stability along Yaw. Tuning the controller as well as adapting the model to the changed AUV would increase its performances even
further.

Key benefits

• A model­based controller “only” needs to learn the
dynamical model as the optimisation is performed
online.

• The sampled­based approach doesn’t require gra­
dient computation and can thus use any type of
forward model.

• The adaptation of the model can be performed
asynchronously while the controller still operates.

• Should work with any AUV (and easily extend to
almost­any robot) as long as there is propriocep­
tion.

• Can effectively control all degrees of freedom si­
multaneously, which is not the case for classic con­
trollers such as PID.
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