Sustainable, low-cost composites for net-zero infrastructure: Green hydrogen pressure vessels for self-sufficient rural and off gas grid detached homes

Hanisa Hasrin^a, Colin Robert^a, Conchúr Ó Brádaigh^a, Alex Baidak^b, Benjamin Wood^b, Paul Mackenzie^b ^a Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK ^b Hexcel Composites Limited, Duxford, UK

THE UNIVERSITY of EDINBURGH School of Engineering

Scottish Funding Council Promoting further and higher education

Scottish Research Partnership in Engineering

Start Date: October 2022

Robotic arm

Nip point

Research Summary

1. Self-sufficient, off gas-grid homes

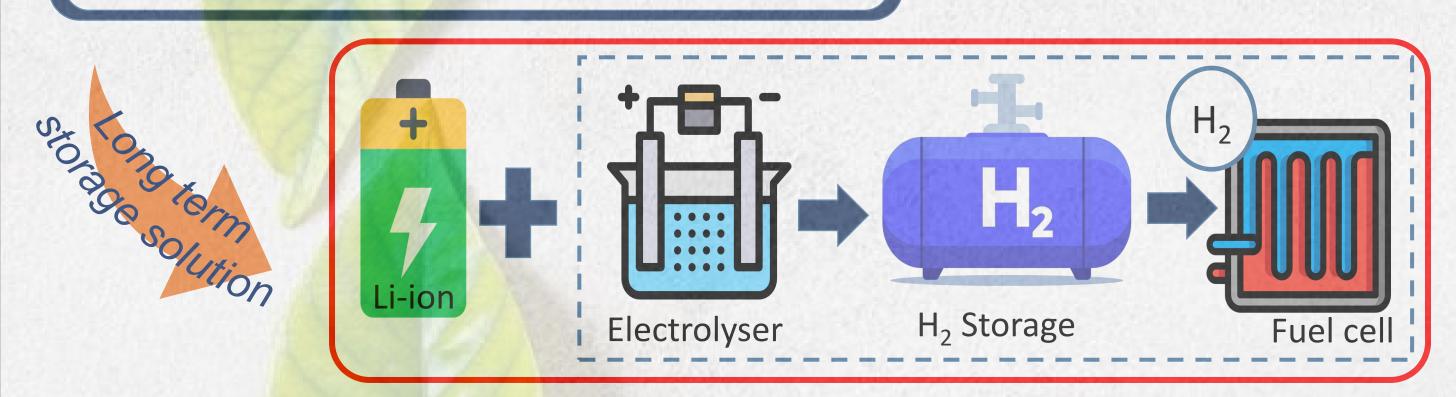
- Residential sector is the 2nd largest CO₂ emitter in the UK (68.1 MtCO₂ in 2021), thus pushing their dependency on RES for energy production
- Sustainable home reliance on RES is limited by its variability and intermittency Produced energy need efficient storage system to allow self-sufficiency and detachment from gas-grid

+

Li-ior

+

Li-ion


Typicalet

storage

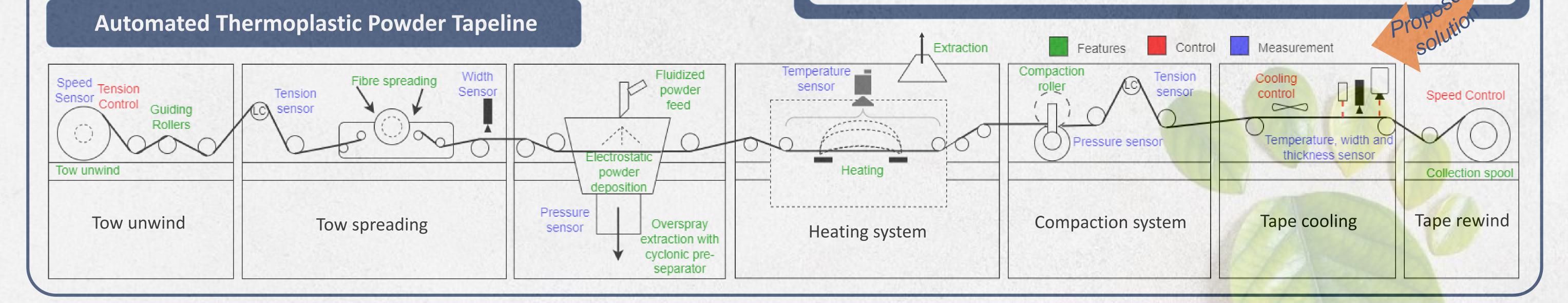
Hydrogen Storage Type 3 Vessels

2. Typical Energy Storage for Homes

- Currently, most homes store energy electrochemically with rechargeable batteries (Liion)
- Batteries lifetime is influenced by operating condition
- Only suitable for short-term storage due to its limited capacity & self-discharge

4. Hydrogen High-Pressure Vessels

- Pressurised gas is the most matured hydrogen storage technology
- Storage dimension & capacity depends on climate
- Pressure vessels of **Type 3 or 4** allows for high volumetric storage density at high pressure
- Type 3 or 4 has composite wrapping as load bearing structure, therefore a more lightweight vessel


5. Vessel Manufacturing and Material

- Vessels composite wrap is manufactured via automated fibre placement (AFP) or filament winding (FW)
- Feed material is composite tape of long continuous fibre with width typically of $\frac{1}{2}$ -inch or $\frac{1}{4}$ -inch
- Long continuous fibre provides mechanical strength
- High cost more than 50% of production cost is from material cost²

3. Hybrid Energy Storage System (Ba-H₂)

6. Problem Statement

- Hydrogen has high energy density (142 MJ/kg), favourable for long term energy storage
- However, hydrogen has poor round trip conversion efficiency, thus not suitable as a stand alone system
- The most efficient way to convert hydrogen to electricity is through fuel cell
- Hybrid storage configuration (Ba-H₂) lowers LCOE, allowing battery not to be oversized¹
- To lower material cost for hydrogen vessels production by:
 - Automation of tape production
 - Utilize dry powder process to eliminate high cost of solvent needed for liquid processing
- Push towards decarbonising and sustainability of composite manufacturing ✓ In line with industry driven needs, use of **thermoplastic** as matrix
- ✓ Thermoplastic has **higher impact resistance**, ability to be **reshaped** at elevated temperature and **recyclable**
- ✓ Thermoplastic composite enables faster production by eliminating curing stage

Research Development

9. Research Challenges

7. Research Aim and Objectives

- **Design and construction** of a high performance thermoplastic powder tapeline • Manufacturing and optimization of thermoplastic tape to meet industry standard assessed by using tape with industrial ready equipment (AFP and/or FW)
- Perform mechanical, physical and optical characterization of the high-performance thermoplastic tape.
- Look for collaborators for production of hydrogen vessels
- Potentially deliver a low-cost highperformance thermoplastic hydrogen pressure vessel (Type 3 or 4) suitable for use in individual housing

8. Thermoplastic Tapeline Concept Design

- Modular system
 - Increase adaptability ability to operate with wide range of thermoplastic powder
- Ease module optimisation
- Low energy by adapting low power heating technology with RF heating³
- Low waste by recycling over-sprayed powder System controlled by custom built HMI on LabVIEW
- Monitoring of line speed, tension, temperature, consolidation pressure and tape width **Control** over line speed, tension, heating temperature, consolidation roller temperature, cooling rate

- High melt viscosity of thermoplastic
 - Limits full fibre wet out and consolidation
 - Compaction roller system on tapeline to improves consolidation
- Adaptability to wide range of powder
 - Tapeline capability for heating up to 400 °C with RF heating, adapt to wide range of powder
- Quality of tape produced should be industrial ready (targeted FVF, low void, targeted crystallinity, tape width control)

References

P. Marocco, D. Ferrero, A. Lanzini, and M. Santarelli, "The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems," J Energy Storage, vol. 4 6, 2022, doi: 10.1016/j.est.2021.103893 A. Elberry, J. Thakur, and A. Santasalo-Aarnio, "Large-scale compressed hydrogen storage as part of renewable electricity storage systems, doi: 10.1016/j.ijhydene.2021.02.080 A. Vashisth, R.E. Healey, M. Pospisil, J. Oh and M. Green, "Continuous processing of pre-pregs using radio frequency heating," Composites Science and Technology, vol. 195, 2020, doi: 108211/j.est.2021.103893.